logo
天地变化的道理
使用率很高网站
生活要常常分享
您身边百科全书
免费为您秀产品
极限 (数学)
重定向;重新导向;字符;字元;文件; 档案;快捷方式; 捷径;项目;专案;计划;计划;计划;计算机; 电脑; 电脑; 极限()是数学分析或微积分的重要基础概念,连续和导数都是通过极限来作定义。极限分为描述一个序列的下标愈来越大时的趋势(序列极限),或是描述函数的自变量接趋近某个值时的函数值的趋势(函数极限)。 函数极限可以推广到网中,而数列的极限则与范畴论中的极限和有向极限密切相关。 概念. 数列极限. 以数列formula_1为例,直观上随着n的增大,formula_2越来越接近0,于是可以认为0是这个序列的"极限"。以下的严格定义来自于柯西: 设formula_3,若对任意formula_4,存在formula_5,使得当formula_6时,有formula_7以逻辑符号来表示即为formula_8则称数列 formula_9 收敛于 formula_10 ,记作 formula_11 或 formula_12。这时也称这个数列是收敛的,反之称为发散。可以证明极限是唯一的,也就是 formula_13 直观地说,不论把"差距范围" formula_14 取得多小,从某项 formula_2 跟 formula_10 的距离都会比 formula_14 小。 函数极限. 考虑定义域为 formula_18 ,对应规则为 formula_19 的函数在 formula_20 趋向 formula_21 的时候的性质。此时 formula_22 于 formula_21 是有定义的。 当formula_20趋向formula_21的时候,函数值似乎趋向formula_26,因此我们有 "极限" formula_26,正好就是 formula_28 ,这种情况我们称为在 formula_29 "连续"。 但有时趋近"极限"不会是那个函数值,考虑定义域为 formula_18 ,对应规则为 formula_31 的函数,那么当 formula_20 趋于 formula_21 的时候,formula_34的极限似乎与前面的 formula_35 相同都是formula_26。但 formula_37,这就是说, formula_34 在 formula_29 是不连续。 有时趋近的点甚至是不在定义域里(也就是无定义),考虑到算式 ( 本质上是一阶逻辑中的项,所以下面以冒号来代表符号辨识上的定义,而非"数字"意义上的相等 ) formula_40 当 formula_41 时,算式 formula_42 等于零除以零而没有定义。但以 formula_42 有定义的最大定义域 formula_44 ( 去除 formula_45 的实数系 ) , 跟对应规则 formula_46 来定义的函数 formula_22, 趋近于 formula_45 的"极限"似乎是 formula_21 实函数在有限处的极限. 若 formula_22 是一个实函数 ( 也就是定义域和值域都包含于实数系 ) ,formula_51,那么 formula_52 用ε-δ语言定义为:对所有的formula_53,都存在 formula_54 使得:对任意 formula_55 满足formula_56时会有formula_57。以逻辑符号来表示即为 formula_58 实函数在无穷远处的极限. 与函数趋于某个给定值时的极限概念相关的是函数在无穷远处的概念。这个概念不能从字面上直接理解为:formula_20距离无穷远越来越小的状态,因为无穷不是一个给定的数,也不能比较距离无穷的远近。因此,我们用formula_20越来越大(如果讨论正无穷时)来替代。 例如考虑formula_61. formula_62 formula_63 formula_64 当formula_20非常大的时候,formula_35的值会趋于formula_21。事实上,formula_35与formula_21之间的距离可以变得任意小,只要我们选取一个足够大的formula_20就可以了。此时,我们称formula_35趋向于(正)无穷时的极限是formula_21。可以写为 formula_73 形式上,我们可以定义: formula_74 为 formula_75 类似地,我们也可以定义: formula_76 为 formula_77 符号. 极限的符号为lim,它出自拉丁文limit(界限)的前三个字母。 在1786年出版的德国人浏伊连(S. L'Huilier)的书中,第一次使用这个符号。不过,“"x"趋于"a"”当时都记作“"x"="a"”,直到20世纪人们才逐渐用“→”替代“=”。 英国近代数学家哈代是第一个使用现代极限符号的人。 性质. 以下规则只有当等号右边的极限存在并且不为无限时才成立: 推广. 拓扑网. 在引入网的概念下,上述的定义可以毫无障碍地推广到任何拓扑空间。事实上,现代数学中的极限概念就是定义在拓扑空间上的,上述的例子都是拓扑空间的具体化。 范畴论. 范畴论中许多泛性质也可从极限来理解。范畴论极限分为极限与余极限(又称上极限),彼此的定义相对偶。
极限 (数学)
生成维基百科快照图片,大概需要3-30秒!
如果网站内容有侵犯您的版权
请联系:pinbor@iissy.com
Copyright ©2014 iissy.com, All Rights Reserved.