嗜极生物
嗜极生物(),或者称作嗜极端菌,是可以(或者"需要")在中生长繁殖的生物,通常为单细胞生物。与此相对的,在较为温和的环境中生活的生物,可称为中温生物(Mesophile)和(Neutrophile)。“极端”环境的定义是人类中心论的,而对这些生物本身而言,这些环境却是很普通的。也就是说,严格来讲,这些“极端环境”是一些生物可以生存的地方,不论人类认为这些地方是普通的还是极端的。举例来说,人可以被分类为嗜温好氧生物。
当我们描述这些从人类看来极端的环境中生存的生物时,多数嗜极生物属于古菌,尽管有时候这个词包含一些细菌和真核生物。并非所有的嗜极生物都是单细胞的。比如嗜冷的蛩蠊(昆虫)和南极磷虾(甲壳类),以及能在许多极端环境下都能存活的熊虫(缓步动物门)就属于嗜极后生动物。
特性.
在1980年代和1990年代,生物学家发现微生物的生存具有极大的灵活性,可以在极端环境(例如酸性或异常高温的环境)中生存,而这对于复杂的生物是不适合的。有研究认为,地球的生命可能起源于海洋中的热液喷口。根据天体物理学家Steinn Sigurdsson的研究,已经发现地球上有4000万年历史的有生命的细菌孢子,它们对辐射非常耐受。一些细菌被发现生活在南极洲冰下800米深寒冷和黑暗的湖泊中以及地球上的海洋最深的地方马里亚纳海沟。已经发现一些微生物在美国西北海岸2600米的海底下的580米以下的下洋壳的岩石内繁殖。 有研究人员说:“你可以在任何地方找到微生物,它们对环境的适应能力非常强,可以在任何地方生存。”极端微生物适应的关键是它们的氨基酸组成,在特定条件下会影响其蛋白质的折叠能力。研究地球上的极端环境可以帮助研究人员了解星球的宜居性极限。比利时根特大学的汤姆·盖森斯(Tom Gheysens)和他的一些同事的研究结果表明,一种芽孢杆菌的孢子在加热到420°C的温度后仍能存活。
嗜极生物的种类.
对于嗜极生物有很多种分类方法,都是根据其选择与其它生物“正常”环境不同的特性分类的。这些分类并不互相排斥。比如,在地下深处高温岩石中生活的生物既是嗜热生物,也是嗜压生物。
在天体生物学中.
天体生物学是研究宇宙中生命的起源、进化、分布和未来的科学,包括外星生命和地球上的生命。天体生物学利用物理学、化学、天文学、太阳物理学、生物学、分子生物学、生态学、行星科学、地理学以及地质学研究其他星球上生命的可能性,并帮助识别可能与地球上不同的生物圈。天体生物学家特别感兴趣的是研究极端微生物,因为它使他们能够将关于地球生命极限的知识映射到潜在的地外环境。
南极洲的荒漠暴露在有害紫外线辐射、低温、高盐浓度和低矿物浓度下,这些环境的状况与火星上的环境类似。因此在南极洲地下发现有生命的微生物表明可能有微生物群落在远古时代生活在火星表面之下。研究表明微生物不太可能存在于火星的地表或浅层,但可能在100米左右的地下深处被发现。
最近在日本对极端微生物进行的研究涉及多种细菌,包括大肠杆菌和反硝化副球菌,这些细菌都处于极端重力条件下。细菌在超离心机中以相当于403627g(即403627倍于地球重力)的高速旋转时被培养。在这种极端重力条件下,反硝化副球菌不仅表现出生存能力,而且还表现出强大的细胞生长能力,这种极端重力条件通常只存在于宇宙环境中,例如在大质量恒星或超新星爆炸的冲击波中。分析表明,原核细胞体积小是超重力条件下成功生长的关键。这项研究对泛种论的可行性有一定的启示。
2012年4月26日,研究者在德国航空航天中心(DLR)维护的火星模拟实验室(MSL)项目的报告中说,地衣在火星条件下存活,并在34天的模拟时间内显示了光合作用适应能力的显着结果。
2013年4月29日,由美国航天局(NASA)资助的伦斯勒理工学院的研究者们报告说,在国际空间站的太空飞行中,微生物似乎以“地球上没有观测到的”和“可能导致增长和毒力增加”的方式适应了太空环境。
2014年5月19日,研究者宣布,许多微生物如"Tersicoccus phoenicis",可能对航天器组装洁净室通常使用的方法具有抗药性。目前还不清楚这种具有抵抗力的微生物是否能够经受住太空旅行的考验,是否会出现在火星上的好奇号火星车上。
2015年9月,来自意大利国家研究委员会(National Research Council of Italy)的研究者报告说,"Saccharolobus solfataricus"能够在火星紫外线辐射下存活,该波长的紫外线被认为对大多数细菌具有极高的致死性。这一发现意义重大,因为它表明不仅细菌孢子,就连生长中的细胞都可以显著抵抗强烈的紫外线辐射。
2016年6月,杨百翰大学的科学家们总结性地报道了枯草芽孢杆菌的内生孢子能够在高达299±28米/秒的高速冲击、极端冲击和极端减速下存活。他们指出,这一特性可能使内生孢子存活下来并通过在陨石内旅行或经历大气破坏而在行星之间转移。此外,他们还提出,航天器着陆也可能导致行星际孢子转移,因为孢子可以在高速撞击下存活下来,同时从航天器喷射到行星表面。这是首次报道细菌能在高速撞击中存活的研究。然而,致命的撞击速度是未知的,应该通过向细菌内生孢子引入更高速度的撞击来做进一步的实验。
例子和最近的发现.
新确定的嗜(-philes)极端生物类型总是在不断增加。化妆品产品的污染是罕见的,但是在发胶中发现的"Microbacterium hatanonis"是一种特别的极端生物。在沥青湖彼奇湖(Pitch Lake)中就有微生物生活,研究表明沥青湖中的极端微生物在106到107细胞/克。
最近一个具有硼耐受性的强嗜硼生物(Borophiles)细菌""被发现。研究这些嗜硼生物可能有助于阐明硼中毒和缺硼机制。
2019年7月,加拿大基德(Kidd)矿一项科学研究发现了生活在地表以下2400米深的可呼吸硫的微生物,它们以黄铁矿等矿石做为食物来源。
生物技术.
美国爱达荷州国家实验室研究人员在黄石国家公园发现的"Thermus brockianus"的微生物中分离出了一种热亲碱过氧化氢酶,它能引发过氧化氢分解成氧和水。过氧化氢酶的工作温度在30°C至94°C之间,pH值在6-10之间。在高温和pH条件下,这种过氧化氢酶与其他过氧化氢酶相比是非常稳定的。在一项比较研究中,这种氧化氢酶在80℃和pH值为10时的半衰期为15天,而来自黑曲霉的过氧化氢酶在相同条件下的半衰期为15秒。过氧化氢酶用于去除工业过程中的过氧化氢,例如在纸浆和纸张漂白、纺织品漂白、食品巴氏杀菌以及食品包装的表面消毒中应用。
DNA修饰酶(例如"Taq" DNA聚合酶)和一些用于临床诊断和淀粉液化的芽孢杆菌酶,是由多家生物技术公司进行商业化生产的。
生成维基百科快照图片,大概需要3-30秒!