logo
天地变化的道理
使用率很高网站
生活要常常分享
您身边百科全书
阻尼
阻尼()是指任何振动系统在振动中,由于外界作用(如流体阻力、摩擦力等)和/或系统本身固有的原因引起的振动幅度逐渐下降的特性,以及此一特性的量化表征。 在实际振动中,由于摩擦力总是存在的,所以振动系统最初所获得的能量,在振动过程中因阻力不断对系统做负功,使得系统的能量不断减少,振动的强度逐渐减弱,振幅也就越来越小,以至于最后的停止振动,像这样的因系统的力学能,由于摩擦及转化成内能逐渐减少,振幅随时间而减弱振动,称为阻尼振动。 词源. “阻尼”源自英语“damping”,其动词形式“damp”意为阻抑、减弱。1933年8月21日至9月2日召开的中央研究院物理研究所第一次名词审查会议上,名词审查委员会主任委员杨肇燫以“尼”字有逐步减阻之义,提出将该词译作“阻尼”而获赞同,自此被采纳而定案。 不同于汉语中“尼”经常作为音译语素的情况(如“比丘尼”“尼龙”“突尼斯”),“阻尼”是用两个同义语素对“damping”进行的意译。 阻尼模型. 在物理学和工程学上,阻尼的力学模型一般是一个与振动速度大小成正比,与振动速度方向相反的力,该模型称为粘性(或黏性)阻尼模型,是工程中应用最广泛的阻尼模型。粘性阻尼模型能较好地模拟空气、水等流体对振动的阻碍作用。本条目以下也主要讨论粘性阻尼模型。然而必须指出的是,自然界中还存在很多完全不满足上述模型的阻尼机制,譬如在具有恒定摩擦系数的桌面上振动的弹簧振子,其受到的阻尼力就仅与自身重量和摩擦系数有关,而与速度无关。 除简单的力学振动阻尼外,阻尼的具体形式还包括电磁阻尼、介质阻尼、结构阻尼等等。尽管科学界目前已经提出了许多种阻尼的数学模型,但实际系统中阻尼的物理本质仍极难确定。下面仅以力学上的粘性阻尼模型为例,作一简单的说明。 粘性阻尼可表示为以下式子: formula_1 其中F表示阻尼力,v表示振子的运动速度(矢量),"c" 是表示阻尼大小的常数,称为阻尼系数,国际单位制单位为牛顿·秒/米。 上述关系类比于电学中定义电阻的欧姆定律。 在日常生活中阻尼的例子随处可见,一阵大风过后摇晃的树会慢慢停下,用手拨一下吉他的弦后声音会越来越小,等等。阻尼现象是自然界中最为普遍的现象之一。 例子:弹簧阻尼器振子. 理想的弹簧阻尼器振子系统如右图所示。分析其受力分别有: 假设振子不再受到其他外力的作用,于是可利用牛顿第二定律写出系统的振动方程: formula_4 其中"a" 为加速度。 运动微分方程. 上面得到的系统振动方程可写成如下形式,问题归结为求解位移"x" 关于时间"t" 函数的二阶常微分方程: formula_5 将方程改写成下面的形式: formula_6 然后为求解以上的方程,定义两个新参量: formula_7 formula_8 上面定义的第一个参量,ωn,称为系统的(无阻尼状态下的)固有频率。 第二个参量,ζ,称为阻尼比。根据定义,固有频率具有角速度的量纲,而阻尼比为无量纲参量。 微分方程化为: formula_9 系统行为. 系统的行为由上小结定义的两个参量——固有频率ωn和阻尼比ζ——所决定。特别地,上小节最后关于formula_10的二次方程是具有一对互异实数根、一对重实数根还是一对共轭复数根,决定了系统的行为。 临界阻尼. 当formula_11时,formula_12的解为一对重实根,此时系统的阻尼形式称为临界阻尼。现实生活中,许多大楼内房间或卫生间的门上在装备自动关门的扭转弹簧的同时,都相应地装有阻尼铰链,使得门的阻尼接近临界阻尼,这样人们关门或门被风吹动时就不会造成太大的声响。 过阻尼. 当formula_13时,formula_12的解为一对互异实根,此时系统的阻尼形式称为过阻尼。当自动门上安装的阻尼铰链使门的阻尼达到过阻尼时,自动关门需要更长的时间。如记忆枕。 欠阻尼. 当formula_15时,formula_12的解为一对共轭虚根,此时系统的阻尼形式称为欠阻尼。在欠阻尼的情况下,系统将以圆频率formula_17相对平衡位置作往复振动。 formula_18 方程的解. 其中 formula_19 是有阻尼作用下系统的固有频率,"A" 和φ 由系统的初始条件(包括振子的初始位置和初始速度)所决定。该振动解代表的是一种振幅按指数规律衰减的简谐振动,称为衰减振动(见上图中 formula_20 的位移-时间曲线所示)。 formula_21 其中"A" 和"B" 由初始条件所决定。该振动解表征的是一种按指数规律衰减的非周期运动。 formula_22 则运动微分方程的通解可以写为: formula_23 其中"A" 和"B" 同样取决于初始条件,λ1与λ2为特征方程式的两个相异实根。该振动解表征的是一种同样按指数规律衰减的非周期蠕动。从上面的位移-时间曲线图中可以看出,过阻尼状态比临界阻尼状态蠕动衰减得更慢。对于临界阻尼状态,振子可能越过平衡位置至多一次,而过阻尼状态下振子不会越过平衡位置。 参考文献. 重定向;重新导向;字符;字元;文件; 档案;快捷方式; 捷径;项目;专案;计划;计划;计划;计算机; 电脑; 电脑;
阻尼
生成维基百科快照图片,大概需要3-30秒!
如果网站内容有侵犯您的版权
请联系:pinbor@iissy.com
Copyright ©2014 iissy.com, All Rights Reserved.