里氏地震规模
里氏地震规模
,是一种表示地震规模大小的标度,由里克特在1935年发明。他后来改进出了近震震级。它是由观测点处地震仪所记录到的地震波最大振幅的常用对数演算而来。震级定义在距离震央100公里处之观测点地震仪记录到的最大水平位移为1微米(这也是伍德-安德森扭力式地震仪的最高精度)的地震作为里氏0地震,如果距震央100公里处的伍德-安德森扭力式地震仪测得的地震波振幅为10微米(0.01毫米)为1,100微米(0.1毫米)为里氏2,1000微米(1毫米)为里氏3,10000微米(1厘米)为里氏4,如此类推。所以,震级相差1代表振幅相差10倍,而所释出的能量则相差约31.7倍。由于地震仪的位置通常不在震央,考虑到地震波在传播过程中的衰减以及其他干扰因素,计算时需减去观测点所在地地震规模所应有的振幅之对数。
当初设计里氏地震规模时所使用的伍德-安德森扭力式地震仪的限制,近震规模ML若大于约6.8或观测点的震中距超过约600公里便不适用。里氏震级现在已被各国地震局抛弃,改用改进的方法(如矩震级)测量。这些改造系统一样使用的是对数系统,经过数值调整使大小和原版里氏震级接近。香港等地媒体在报道时有时把这些方法得到的数据一样加上“里氏”前缀,中国大陆的新闻报道规范要求不应将里氏震级以外的其他震级度量误加上“里氏”前缀。
发展历史.
里氏地震规模最早是在1935年由两位来自美国加州理工学院的地震学家里克特和古腾堡共同制定的。
此标度原先仅是为了研究美国加州地区发生的地震而设计的,并用伍德-安德森扭力式地震仪测量。里克特设计此标度的目的是区分当时加州地区发生的大量小规模地震和少量大规模地震,而灵感则来自天文学中表示天体亮度的星等。
为了使结果不为负数,里克特定义在距离震中100公里处之观测点地震仪记录到的最大水平位移为1微米(这也是伍德-安德森扭力式地震仪的最高精度)的地震作为0地震。按照这个定义,如果距震中100公里处的伍德-安德森扭力式地震仪测得的地震波振幅为1毫米(103微米)的话,则震级为里氏3。里氏地震规模并没有规定上限或下限。现代精密的地震仪经常记录到规模为负数的地震。
缺点和改进.
里氏地震规模的主要缺陷在于它与震源的物理特性没有直接的联系,并且由于「地震强度频谱的比例定律」(The Scaling Law of Earthquake Spectra)的限制,在规模7左右即会产生饱和效应,使得一些强度明显不同的地震在用传统方法计算后得出的里氏地震规模(ML)数值却一样。到了20世纪中后期,地震学者普遍认为这些传统的地震规模表示方法已经过时,转而采用物理含义更为丰富,更能直接反应地震过程物理实质的表示方法即矩震级。地震矩规模是由加州理工学院的金森博雄教授于1977年提出的。地震矩规模能更仔细的描述地震的物理特性,如地层错动的规模和地震的能量等。
地震震级与地震烈度是不同的概念。地震烈度(例如麦加利地震烈度)是表示地震破坏程度的标度,与地震区域的各种条件有关,并非地震之绝对强度。
震级与发生频率.
下表列出的是不同黎克特制震级(ML)的年均发生次数和震中地区的影响:
("数据来自美国地质调查局。需要注意的是由于地震影响还受当地地质条件等因素的影响,表中描述的是极端影响")
历史纪录中最强烈的地震是1960年5月22日的智利大地震,矩震级为9.5。
震级与能量.
芮氏地震规模与能量 (焦耳) 关系的等式如下:
formula_1
从以上等式可得出,规模每相差1.0,释放的能量就相差101.5倍,即31.6227766...倍,约31.7倍;每相差2.0,释放的能量则相差103倍,即1000倍。
下表列出的是不同级别的地震释放的能量相当于的三硝基甲苯当量(1吨TNT炸药能量约为4.184×109焦耳):