纯粹数学
纯粹数学(--
)又称基础数学、理论数学,是一门专门研究数学本身,不以应用为目的的学问,相对概念为应用数学。
纯粹数学被人视为严格、抽象和美丽,以数论、数理逻辑为其代表。自18世纪以来,纯粹数学成为数学研究的一个特定种类,并随着探险、天文学、物理学、工程学等的发展而发展。
历史.
19世纪.
“纯粹数学”这个词是从这个19世纪中期建立的教授职位的全名而来的。“纯粹”数学作为一门独立的学科的想法可能就是从那个时候发展起来的。高斯一代的数学家没有彻底地区分过“纯粹”和“应用”。之后,专门化和专业化,特别是魏尔施特拉斯研究数学分析的方法,使得两者的区别越来越大。
20世纪.
进入20世纪,数学家们受到希尔伯特的影响,开始使用公理系统。罗素提出了“纯粹数学”的逻辑公式化方法,以量化的命题为形式。随着数学的公理化,这些公式变得越来越抽象,“严格证明”成为了简单的标准。
实际上在公理系统中,“严格”在“证明”中没有任何新意。以布尔巴基小组的观点,纯粹数学就是已经被证明了的公理。纯粹数学家成为普遍接受的职业,可以通过训练而取得。
一般化与抽象.
纯粹数学的一个核心思想就是一般化,它常常有一种更加一般化的趋势。
纯粹主义.
关于纯粹数学和应用数学,数学家们总有不同的见解。有人认为,最有名的现代例子莫过于戈弗雷·哈罗德·哈代的一个数学家的辩白。
重定向;重新导向;字符;字元;文件; 档案;快捷方式; 捷径;项目;专案;计划;计划;计划;计算机; 电脑; 电脑;
生成维基百科快照图片,大概需要3-30秒!