尺规作图
尺规作图
尺规作图(英语:Compass-and-straightedge 或 ruler-and-compass construction)是起源于古希腊的数学课题。只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题。
值得注意的是,以上的“直尺”和“圆规”是抽象意义的,跟现实中的并非完全相同,具体而言,有以下的限制:
尺规作图的研究,促成数学上多个领域的发展。有些数学结果就是为解决古希腊三大名题而得出的副产品,对尺规作图的探索推动了对圆锥曲线的研究,并发现了一批著名的曲线。
若干著名的尺规作图已知是不可能的,而当中很多不可能的例子是利用了19世纪出现的伽罗瓦理论以证明。尽管如此,仍有很多业余者尝试这些不可能的题目,当中以化圆为方及三等分任意角(Angle trisection)最受注意。
原理.
作图公法.
以下是尺规作图中可用的基本方法,也称为作图公法,任何尺规作图的步骤均可分解为以下五种方法:
问题.
古希腊三大难题.
古希腊三大难题是早期希腊数学家特别感兴趣的三个问题。由于我们的现代几何学知识是从希腊发源的,因此这三个古典几何问题在几何学中有着很高的地位。它们分别是:
求一个正方形的边长,使其面积与一已知圆的相等;
求一角,使其角度是一已知角度的三分之一(可以用只有一点刻度的直尺与圆规作出)
求一立方体的棱长,使其体积是一已知立方体的二倍(可以用木工的角尺作出)。
在欧几里得几何学的限制下,以上三个问题都不可能解决。
四等分圆周.
这道题只准许使用圆规,要求参与者将一个已知圆心的圆周4等分。这道题传言是拿破仑·波拿巴拟出,向全法国数学家挑战的。这道题已被证明有解。