logo
天地变化的道理
使用率很高网站
生活要常常分享
您身边百科全书
免费为您秀产品
钱包悖论
钱包悖论 钱包悖论,又称钱包游戏,是机率论中的一个悖论。 内容. A和B两人进行一场赌博。 赌法是:由第三者计算A、B二者钱包里面的钱,钱少者可以赢走钱多者的钱。 A对于这场赌博的想法为:若B的钱比我少,我可能输掉我现有的钱。但若B的钱比我多,我赢了,就会得到多于我现有的钱。我能够赢的钱比输的钱多,所以这场赌博对我有利。 而B的想法也是如此。 二人想法的逻辑都正确,但若认为二人的想法都正确,又将做出这场赌博对A、B二人都有利的错误结论。这显然是一个悖论。 来源. 钱包悖论源自法国数学家莫里斯·克莱特契克,在他的《数学消遣》书中赌的是领带而非钱. “有两个人都声称他的领带好一些。他们叫来了第三个人,让他作出裁决到底谁的好。胜者必须拿出他的领带给败者作为安慰。两个争执者都这样想:我知道我的领带值多少。我也许会失去它,可是我也可能赢得一条更好的领带,所以这种比赛是对我有利。一个比赛怎么会对双方都有利呢?” 分析. 克莱特契克的分析. 克莱特契克在他的书中指明必须限制条件,这才是一场公平的游戏,例如A,B二人对对方穿领带的习惯一无所知等。 他还假定每一个比赛者带有从0到任意数量(比如说一百元)的钱。以此假定构成两人钱数的矩阵,就可看出这个此赛是“对称的”,不会偏向任何一方。 但他没有指出两个比赛者的想法错在哪里。 考虑胜算. 其实问题就在A,B二人只以“可以赢更多的钱”这点,就做出这场赌博对自己有利的结论,当然是错误的。 这场赌博应从胜算去判断对谁有利,而不是以“可以赢更多的钱”来判断。 若以谁有胜算来判断,必须注意二点: 若钱包里的钱比平均值小,那胜算比较大,反之较小。各国家,各地区人的钱包里的平均值都不一样,全人类太广泛,以国家,地区来分更加有胜算。 但就算是费很大力气来得到这平均值,还是很难确定有胜算的。由此可见A,B二人认为这场赌博对自己有利的结论是做得多么轻易,缺乏思考。 其实最有胜算的方法是知道对方的钱包里有多少钱。 另一种分析. 钱包只有二个,所以钱包里的钱只存在二个数: X,Y,设X>Y。 A有1/2机会是X,1/2机会是Y;B也如是。 如果A的钱是Y,则赢得X;如果A的钱是X,则输掉X;B也如是。 结论:1/2机会赢,1/2机会输。 而A,B想法的问题出在,他们假设了3个数: 设A有X元,B有Y元,或Z元(Z>X)。 但实际上只存在2个数,所以这是错误的论证,推理出错误的结论。 还有一种分析. 假如A(或B)有可赌性,那么A(或B)钱数的可能性的最大值和最小值是一样的,还有可能性的最大值是有限的。可A(或B)觉得无论自己的值是多少,对方都可能超越,可是当自己为可能性的最大值时,则没有可能被超越,否则的话胜算则偏向可能性的最大值小的一方。对方可能性的最大值被认为是无限制的话,就导致了赢的可能性不会随钱数的增加而减少。 贝叶斯分析. 如果钱数存在先验概率分布,则可以给出赢钱的期望值以及输赢概率。由于先验概率在钱数很大时恒等于零,容易证明无脑交换平均不会有收益 现实例子. 最常见的就是在赌博时,期待「如果赢的话、会赢得比输得更多」。例如玩吃角子老虎机时认为「就算只中樱桃,也是翻五倍!」但问题在于未必会中奖。
钱包悖论
本站由爱斯园团队开发维护,感谢
那些提出宝贵意见和打赏的网友,没有你们的支持,
网站不可能发展到今天,
继往开来,善终如始,我们将继续砥砺前行。
Copyright ©2014 iissy.com, All Rights Reserved.