树 (数据结构)
树 (数据结构)
在计算机科学中,树()是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合。它是由n(n>0)个有限节点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:
存储.
父节点表示法.
存储结构.
基本操作.
设已有链队列类型LinkQueue的定义及基本操作(参见队列)。
构造空树.
清空或销毁一个树也是同样的操作
void ClearTree(PTree *T)
T->n = 0;
构造树.
void CreateTree(PTree *T)
LinkQueue q;
QElemType p,qq;
int i=1,j,l;
char c[MAX_TREE_SIZE]; /* 临时存放孩子节点数组 */
InitQueue(&q); /* 初始化队列 */
printf("请输入根节点(字符型,空格为空): ");
scanf("%c%*c",&T->nodes[0].data); /* 根节点序号为0,%*c吃掉回车符 */
if(T->nodes[0].data!=Nil) /* 非空树 */
T->nodes[0].parent=-1 ; /* 根节点无父节点 */
qq.name=T->nodes[0].data;
qq.num=0;
EnQueue(&q,qq); /* 入队此节点 */
while(inodes[i].data=c[j];
T->nodes[i].parent=qq.num;
p.name=c[j];
p.num=i;
EnQueue(&q,p); /* 入队此节点 */
i++;
if(i>MAX_TREE_SIZE)
printf("节点数超过数组容量\n");
exit(OVERFLOW);
T->n=i;
else
T->n=0;
判断树是否为空.
Status TreeEmpty(PTree *T)
return T->n==0;
获取树的深度.
int TreeDepth(PTree *T)
int k,m,def,max=0;
for(k=0;kn;++k)
def=1; /* 初始化本节点的深度 */
m=T->nodes[k].parent;
while(m!=-1)
m=T->nodes[m].parent;
def++;
if(maxn;i++)
if(T->nodes[i].parentnodes[i].data;
return Nil;
获取第i个节点的值.
TElemType Value(PTree *T,int i)
if(in)
return T->nodes[i].data;
else
return Nil;
改变节点的值.
Status Assign(PTree *T,TElemType cur_e,TElemType value)
int j;
for(j=0;jn;j++)
if(T->nodes[j].data==cur_e)
T->nodes[j].data=value;
return OK;
return ERROR;
获取节点的父节点.
TElemType Parent(PTree *T,TElemType cur_e)
/* 操作结果:若cur_e是T的非根节点,则返回它的父节点,否则函数值为"空"*/
int j;
for(j=1;jn;j++) /* 根节点序号为0 */
if(T->nodes[j].data==cur_e)
return T->nodes[T->nodes[j].parent].data;
return Nil;
获取节点的最左孩子节点.
TElemType LeftChild(PTree *T,TElemType cur_e)
/* 操作结果:若cur_e是T的非叶子节点,则返回它的最左孩子,否则返回"空"*/
int i,j;
for(i=0;in;i++)
if(T->nodes[i].data==cur_e) /* 找到cur_e,其序号为i */
break;
for(j=i+1;jn;j++) /* 根据树的构造函数,孩子的序号>其父节点的序号 */
if(T->nodes[j].parent==i) /* 根据树的构造函数,最左孩子(长子)的序号<其它孩子的序号 */
return T->nodes[j].data;
return Nil;
获取节点的右兄弟节点.
TElemType RightSibling(PTree *T,TElemType cur_e)
/* 操作结果:若cur_e有右(下一个)兄弟,则返回它的右兄弟,否则返回"空"*/
int i;
for(i=0;in;i++)
if(T->nodes[i].data==cur_e) /* 找到cur_e,其序号为i */
break;
if(T->nodes[i+1].parent==T->nodes[i].parent)
/* 根据树的构造函数,若cur_e有右兄弟的话则右兄弟紧接其后 */
return T->nodes[i+1].data;
return Nil;
输出树.
void Print(PTree *T)
int i;
printf("节点个数=%d\n",T->n);
printf(" 节点 父节点\n");
for(i=0;in;i++)
printf(" %c",Value(T,i)); /* 节点 */
if(T->nodes[i].parent>=0) /* 有父节点 */
printf(" %c",Value(T,T->nodes[i].parent)); /* 父节点 */
printf("\n");
向树中插入另一棵树.
Status InsertChild(PTree *T,TElemType p,int i,PTree c)
/* 操作结果:插入c为T中p节点的第i棵子树 */
int j,k,l,f=1,n=0; /* 设交换标志f的初值为1,p的孩子数n的初值为0 */
PTNode t;
if(!TreeEmpty(T)) /* T不空 */
for(j=0;jn;j++) /* 在T中找p的序号 */
if(T->nodes[j].data==p) /* p的序号为j */
break;
l=j+1; /* 如果c是p的第1棵子树,则插在j+1处 */
if(i>1) /* c不是p的第1棵子树 */
for(k=j+1;kn;k++) /* 从j+1开始找p的前i-1个孩子 */
if(T->nodes[k].parent==j) /* 当前节点是p的孩子 */
n++; /* 孩子数加1 */
if(n==i-1) /* 找到p的第i-1个孩子,其序号为k1 */
break;
l=k+1; /* c插在k+1处 */
} /* p的序号为j,c插在l处 */
if(ln) /* 插入点l不在最后 */
for(k=T->n-1;k>=l;k--) /* 依次将序号l以后的节点向后移c.n个位置 */
T->nodes[k+c.n]=T->nodes[k];
if(T->nodes[k].parent>=l)
T->nodes[k+c.n].parent+=c.n;
for(k=0;knodes[l+k].data=c.nodes[k].data; /* 依次将树c的所有节点插于此处 */
T->nodes[l+k].parent=c.nodes[k].parent+l;
T->nodes[l].parent=j; /* 树c的根节点的父节点为p */
T->n+=c.n; /* 树T的节点数加c.n个 */
while(f)
{ /* 从插入点之后,将节点仍按层序排列 */
f=0; /* 交换标志置0 */
for(j=l;jn-1;j++)
if(T->nodes[j].parent>T->nodes[j+1].parent)
{/* 如果节点j的父节点排在节点j+1的父节点之后(树没有按层序排列),交换两节点*/
t=T->nodes[j];
T->nodes[j]=T->nodes[j+1];
T->nodes[j+1]=t;
f=1; /* 交换标志置1 */
for(k=j;kn;k++) /* 改变父节点序号 */
if(T->nodes[k].parent==j)
T->nodes[k].parent++; /* 父节点序号改为j+1 */
else if(T->nodes[k].parent==j+1)
T->nodes[k].parent--; /* 父节点序号改为j */
return OK;
else /* 树T不存在 */
return ERROR;
删除子树.
Status deleted[MAX_TREE_SIZE+1]; /* 删除标志数组(全局量) */
void DeleteChild(PTree *T,TElemType p,int i)
/* 操作结果:删除T中节点p的第i棵子树 */
int j,k,n=0;
LinkQueue q;
QElemType pq,qq;
for(j=0;jn;j++)
deleted[j]=0; /* 置初值为0(不删除标记) */
pq.name='a'; /* 此成员不用 */
InitQueue(&q); /* 初始化队列 */
for(j=0;jn;j++)
if(T->nodes[j].data==p)
break; /* j为节点p的序号 */
for(k=j+1;kn;k++)
if(T->nodes[k].parent==j)
n++;
if(n==i)
break; /* k为p的第i棵子树节点的序号 */
if(kn) /* p的第i棵子树节点存在 */
n=0;
pq.num=k;
deleted[k]=1; /* 置删除标记 */
n++;
EnQueue(&q,pq);
while(!QueueEmpty(q))
DeQueue(&q,&qq);
for(j=qq.num+1;jn;j++)
if(T->nodes[j].parent==qq.num)
pq.num=j;
deleted[j]=1; /* 置删除标记 */
n++;
EnQueue(&q,pq);
for(j=0;jn;j++)
if(deleted[j]==1)
for(k=j+1;kn;k++)
deleted[k-1]=deleted[k];
T->nodes[k-1]=T->nodes[k];
if(T->nodes[k].parent>j)
T->nodes[k-1].parent--;
j--;
T->n-=n; /* n为待删除节点数 */
层序遍历树.
void TraverseTree(PTree *T,void(*Visit)(TElemType))
/* 操作结果:层序遍历树T,对每个节点调用函数Visit一次且仅一次 */
int i;
for(i=0;in;i++)
Visit(T->nodes[i].data);
printf("\n");
孩子链表表示法.
存储结构.
/*树的孩子链表存储表示*/
typedef struct CTNode { // 孩子节点
int child;
struct CTNode *next;
} *ChildPtr;
typedef struct {
ElemType data; // 节点的数据元素
ChildPtr firstchild; // 孩子链表头指针
} CTBox;
typedef struct {
CTBox nodes[MAX_TREE_SIZE];
int n, r; // 节点数和根节点的位置
} CTree;
森林、树与二叉树的转换.
见二叉树相应章节