logo
天地变化的道理
使用率很高网站
生活要常常分享
您身边百科全书
杨辉三角形
杨辉-{三角形,又称帕斯-{卡三角形、贾宪三角形、海亚姆三角形、巴斯-{卡三角形,是二项式系数的一种写法,形似三角形,在中国首现于南宋杨辉的《详解九章算法》得名,其在书中说明是引自贾宪的《释锁算书》,故又名贾宪三角形。前 9 行写出来如下: formula_1 杨辉三角形第 formula_2 层(顶层称第 0 层,第 1 行,第 formula_2 层即第 formula_4 行,此处 formula_2 为包含 0 在内的自然数)正好对应于二项式 formula_6 展开的系数。例如第二层 1 2 1 是幂指数为 2 的二项式 formula_7 展开形式 formula_8 的系数。 历史. 波斯数学家Al-Karaji和天文学家兼诗人欧玛尔·海亚姆(عمر خیام,Omar Khayyám)在10世纪都发现了这个三角形,而且还知道可以借助这个三角形找formula_2次根,和它跟二项式的关系。但他们的著作已不存。 11世纪北宋数学家贾宪发明了贾宪三角,并发明了增乘方造表法,可以求任意高次方的展开式系数。贾宪还对贾宪三角表(古代称数字表为“立成”)的构造进行描述。贾宪的三角表图和文字描写,仍保存在大英博物馆所藏《永乐大典》卷一万六千三百四十四。 13世纪中国南宋数学家杨辉在《详解九章算术》里解释这种形式的数表,并说明此表引自11世纪前半贾宪的《释锁算术》。 1303年元代数学家朱世杰在《四元玉鉴》卷首绘制《古法七乘方图》。 意大利人称之为「塔塔利亚三角形」(Triangolo di Tartaglia)以纪念在16世纪发现一元三次方程解的塔塔利亚。 布莱士·帕斯卡的著作"Traité du triangle arithmétique"(1655年)介绍了这个三角形。帕斯卡搜集了几个关于它的结果,并以此解决一些概率论上的问题,影响面广泛,Pierre Raymond de Montmort(1708年)和亚伯拉罕·棣莫弗(1730年)都用帕斯卡来称呼这个三角形。 历史上曾经独立绘制过这种图表的数学家: 中国数学家的研究. 中国贾宪是贾宪三角的发明人,贾宪/杨辉称之为“释锁求廉本源”,朱世杰称之为“古法七乘方图”(1303年),明代数学家吴敬《九章详注比类算法大全》称之为“开方作法本源”(1450年);明王文素《算学宝鉴》称之为“开方本源图”(1524年);明代程大位《算法统宗》称之为“开方求廉率作法本源图”(1592年)。 清代梅文鼎《少广拾遗》称之为“七乘府算法”(1692年);清代孔广森《少广正负术》称之为“诸乘方乘率表”;焦循《加减乘除释》称之为“古开方本原图”;刘衡《筹表开诸乘方捷法》称之为“开方求廉率图”;项名达《象数一原》称之为“递加图”。伟烈亚力《数学启蒙》称之为“倍廉法表”;李善兰《垛积比类》称之为“三角垛表”。近代中算史家李俨称之为“巴斯噶三角形”,但根据《永乐大典》指出“巴斯噶三角形”最早由贾宪使用。。著名数学家华罗庚,在1956年写的一本通俗读物《从杨辉三角谈起》,将贾宪的《开方作法本源》称为“杨辉三角”,首次将“巴斯噶三角形”回归宋代数学家名下;此后的中学数学教科书和许多数学科普读物都跟随之。另一方面,专业的中国数学史著作,都用“贾宪三角”这个称呼。。 一个数在杨辉三角出现的次数. 由1开始,正整数在杨辉三角形出现的次数为:∞,1, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 4, ... ()。最小而又大于1的数在贾宪三角形至少出现n次的数为2, 3, 6, 10, 120, 120, 3003, 3003, ... () formula_47formula_48
杨辉三角形
生成维基百科快照图片,大概需要3-30秒!
如果网站内容有侵犯您的版权
请联系:pinbor@iissy.com
Copyright ©2014 iissy.com, All Rights Reserved.